106 research outputs found

    Low-Profile Metamaterial-Based Adaptative Beamforming Techniques

    Get PDF
    In this chapter, we will review recent research advances on beamforming and spatial multiplexing techniques using reconfigurable metamaterials (MTMs) and metasurfaces. This chapter starts by discussing basic principles and practical applications of transmission line-based metamaterials and planar metasurfaces, followed by their active versions that enable novel smart antennas with beam steering and beamshaping functions. We include detailed descriptions of their practical realizations and the integration with circuits and the radio-frequency (RF) frontend, which are used to adaptively and dynamically manipulate electromagnetic radiation. We summarize the state-of-the-art MTM/metasurface-based beamforming techniques and provide a critical comparison for their uses in the RF-to-millimeter-wave range in terms of cost, reconfigurability, system integratability and radiation properties. These techniques are expected to pave the way for the massive deployment of communication, radar, remote sensing and medical and security imaging systems

    A Reconfigurable Linear RF Analog Processor for Realizing Microwave Artificial Neural Network

    Full text link
    Owing to the data explosion and rapid development of artificial intelligence (AI), particularly deep neural networks (DNNs), the ever-increasing demand for large-scale matrix-vector multiplication has become one of the major issues in machine learning (ML). Training and evaluating such neural networks rely on heavy computational resources, resulting in significant system latency and power consumption. To overcome these issues, analog computing using optical interferometric-based linear processors have recently appeared as promising candidates in accelerating matrix-vector multiplication and lowering power consumption. On the other hand, radio frequency (RF) electromagnetic waves can also exhibit similar advantages as the optical counterpart by performing analog computation at light speed with lower power. Furthermore, RF devices have extra benefits such as lower cost, mature fabrication, and analog-digital mixed design simplicity, which has great potential in realizing affordable, scalable, low latency, low power, near-sensor radio frequency neural network (RFNN) that may greatly enrich RF signal processing capability. In this work, we propose a 2X2 reconfigurable linear RF analog processor in theory and experiment, which can be applied as a matrix multiplier in an artificial neural network (ANN). The proposed device can be utilized to realize a 2X2 simple RFNN for data classification. An 8X8 linear analog processor formed by 28 RFNN devices are also applied in a 4-layer ANN for Modified National Institute of Standards and Technology (MNIST) dataset classification.Comment: 11 pages, 16 figure

    Programming Wireless Security through Learning-Aided Spatiotemporal Digital Coding Metamaterial Antenna

    Full text link
    The advancement of future large-scale wireless networks necessitates the development of cost-effective and scalable security solutions. Conventional cryptographic methods, due to their computational and key management complexity, are unable to fulfill the low-latency and scalability requirements of these networks. Physical layer (PHY) security has been put forth as a cost-effective alternative to cryptographic mechanisms that can circumvent the need for explicit key exchange between communication devices, owing to the fact that PHY security relies on the physics of the signal transmission for providing security. In this work, a space-time-modulated digitally-coded metamaterial (MTM) leaky wave antenna (LWA) is proposed that can enable PHY security by achieving the functionalities of directional modulation (DM) using a machine learning-aided branch and bound (B&B) optimized coding sequence. From the theoretical perspective, it is first shown that the proposed space-time MTM antenna architecture can achieve DM through both the spatial and spectral manipulation of the orthogonal frequency division multiplexing (OFDM) signal received by a user equipment. Simulation results are then provided as proof-of-principle, demonstrating the applicability of our approach for achieving DM in various communication settings. To further validate our simulation results, a prototype of the proposed architecture controlled by a field-programmable gate array (FPGA) is realized, which achieves DM via an optimized coding sequence carried out by the learning-aided branch-and-bound algorithm corresponding to the states of the MTM LWA's unit cells. Experimental results confirm the theory behind the space-time-modulated MTM LWA in achieving DM, which is observed via both the spectral harmonic patterns and bit error rate (BER) measurements

    Simultaneous Monitoring of Multiple People's Vital Sign Leveraging a Single Phased-MIMO Radar

    Full text link
    Vital sign monitoring plays a critical role in tracking the physiological state of people and enabling various health-related applications (e.g., recommending a change of lifestyle, examining the risk of diseases). Traditional approaches rely on hospitalization or body-attached instruments, which are costly and intrusive. Therefore, researchers have been exploring contact-less vital sign monitoring with radio frequency signals in recent years. Early studies with continuous wave radars/WiFi devices work on detecting vital signs of a single individual, but it still remains challenging to simultaneously monitor vital signs of multiple subjects, especially those who locate in proximity. In this paper, we design and implement a time-division multiplexing (TDM) phased-MIMO radar sensing scheme for high-precision vital sign monitoring of multiple people. Our phased-MIMO radar can steer the mmWave beam towards different directions with a micro-second delay, which enables capturing the vital signs of multiple individuals at the same radial distance to the radar. Furthermore, we develop a TDM-MIMO technique to fully utilize all transmitting antenna (TX)-receiving antenna (RX) pairs, thereby significantly boosting the signal-to-noise ratio. Based on the designed TDM phased-MIMO radar, we develop a system to automatically localize multiple human subjects and estimate their vital signs. Extensive evaluations show that under two-subject scenarios, our system can achieve an error of less than 1 beat per minute (BPM) and 3 BPM for breathing rate (BR) and heartbeat rate (HR) estimations, respectively, at a subject-to-radar distance of 1.6 m1.6~m. The minimal subject-to-subject angle separation is 40deg40{\deg}, corresponding to a close distance of 0.5 m0.5~m between two subjects, which outperforms the state-of-the-art

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin
    corecore